[ Pobierz całość w formacie PDF ]
.opt3U]\UyZQ\FKGREURFLDFKREZRGyZREFL*RQ\FK( Q Q=Q=κ =κ =12) ,1 / Q.kropt'OD VSU] *H ZL NV]\FK QL* RSW\PDOQH κ > κ FKDUDNWHU\VW\NDoptDPSOLWXGRZDSRVLDGDGZDPDNVLPDZ\VW SXMFHSU]\RGVWURMHQLDFK22ν =ν = ± κ κ−moptηκ = κηdBNUmaxκ = κRSW−10κ < κRSWκ > κRSW−20ν−30−ν mν m5\V&KDUDNWHU\VW\NLDPSOLWXGRZHREZRGyZVSU] *RQ\FK1D U\V SU]HGVWDZLRQR FKDUDNWHU\VW\NL DPSOLWXGRZHVSUDZQRFL REZRGyZ VSU] *RQ\FK RGSRZLDGDMFH Uy*Q\P ZDUWRFLRPZVSyáF]\QQLNDVSU] *HQLDκ-DNZLGDüSU]H]RGSRZLHGQLGREyUWHJRZVSyáF]\QQLNDPR*QDZSá\ZDüQD NV]WDáW FKDUDNWHU\VW\NL DPSOLWXGRZHM Z SREOL*X F] VWRWOLZRFLUH]RQDQVRZHM MDN UyZQLH* QD VSUDZQRü REZRGX : RSLVDQ\PSU]\SDGNX ZL NV]\ MHVW UyZQLH* ZVSyáF]\QQLN SURVWRNWQRFL QL* GODSRMHG\QF]HJRREZRGXUH]RQDQVRZHJR'ODκ = κ ZVSyáF]\QQLNWHQkroptZ\QRVL p ≈ 0 32,2PyZLRQH Z\*HM VSU] *HQLH LQGXNF\MQH GZyFK REZRGyZUH]RQDQVRZ\FKMHVWW\ONRMHGQ\P]ZLHOXPR*OLZ\FKUR]ZL]DVSRUyGNWyU\FK GZD R VSU] *HQLX SRMHPQRFLRZ\P V SU]HGVWDZLRQH QDU\V&VC 1C 2CLL112CLL212Cs&& && &V&κ =V(≈κ =≈& +& +&V & +&&&V)(& +&V)& &()(V )V5\V3U]\NáDG\UHDOL]DFMLVSU] *HQLDGZyFKREZRGyZUH]RQDQVRZ\FK'OD SRSUDZ\ VHOHNW\ZQRFL ILOWUX /& L Z FHOX X]\VNDQLDZL NV]HJRZVSyáF]\QQLNDSURVWRNWQRFLFKDUDNWHU\VW\NLDPSOLWXGRZHMPR*QDVWRVRZDüZL FHMQL*GZDVSU] *RQHREZRG\UH]RQDQVRZH3U]\Z\NRU]\VW\ZDQLXWHMPHWRG\VWRVXQNRZRáDWZRPR*QDUHDOL]RZDüILOWU\V]HURNRSDVPRZH R V]HURNRFL SDVPD B > ( ,0 1 − ,0 2) f X]\VNXMFFKDUDNWHU\VW\NL DPSOLWXGRZH ]EOL*RQH GR LGHDOQ\FK : ILOWUDFKZVNRSDVPRZ\FK PHWRGD WD MHVW PQLHM HIHNW\ZQD ZVNXWHNRJUDQLF]RQHMGREURFLREZRGyZ:UD]]H]ZL NV]HQLHPLFKOLF]E\URVQVWUDW\ PRF\ Z REZRGDFK L QLH PD Z\UD(QHM SRSUDZ\ NV]WDáWXFKDUDNWHU\VW\NLDPSOLWXGRZHMILOWUX),/75 [ Pobierz całość w formacie PDF ]

  • zanotowane.pl
  • doc.pisz.pl
  • pdf.pisz.pl
  • wpserwis.htw.pl